Accelerating Monte Carlo Markov chains with proxy and error models

نویسندگان

  • Laureline Josset
  • Vasily V. Demyanov
  • Ahmed H. Elsheikh
  • Ivan Lunati
چکیده

5 In groundwater modeling, Monte Carlo Markov Chain (MCMC) simulations are often used to calibrate aquifer parameters and propagate the uncertainty to the quantity of interest (e.g., pollutant concentration). However, this approach requires a large number of flow simulations and incurs high computational cost, which prevents a systematic evaluation of the uncertainty in presence of complex physical processes. To avoid this computational bottleneck, we propose to use an approximate model (proxy) to predict the response of the exact model. Here, we use a proxy that entails a very simplified description of the physics with respect to the detailed physics described by the “exact” model. The error model accounts for the simplification of the physical process; and it is trained on a learning set of realizations, for which both the proxy and exact responses are computed. First, the key features of the set of curves are extracted using functional principal component analysis; then, a regression model is built to characterize the relationship between the curves. The performance of the proposed approach is evaluated on the Imperial College Fault model. We show that the joint use of the proxy and the error model to infer the model parameters in a two-stage MCMC set-up allows longer chains at a comparable computational cost. Unnecessary evaluations of the exact responses are avoided through a preliminary evaluation of the proposal made on the basis of the corrected proxy response. The error model trained on the learning set is crucial to provide a sufficiently accurate prediction of the exact response and guide the chains to the low misfit regions. The proposed methodology can be extended to multiple-chain algorithms or other Bayesian inference methods. Moreover, FPCA is not limited to the specific presented application and offers a general framework to build error models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Monte Carlo Molecular Simulations Using Novel Extrapolation Schemes Combined with Fast Database Generation on Massively Parallel Machines

In this paper we introduce efficient thermodynamically consistent techniques to extrapolate and interpolate normalized Canonical NVT ensemble averages for Lennard-Jones (L-J) fluids at different thermodynamic conditions from expensively simulated data points. This leads to a significant speed up in generating intensive data. Preliminary results show promising applicability in oil and gas modell...

متن کامل

Monte Carlo error estimation for multivariate Markov chains

In this paper, the conservative Monte Carlo error estimation methods and theory developed in Geyer (1992a) are extended from univariate to multivariate Markov chain applications. A small simulation study demonstrates the feasibility of the proposed estimators.

متن کامل

Spatial count models on the number of unhealthy days in Tehran

Spatial count data is usually found in most sciences such as environmental science, meteorology, geology and medicine. Spatial generalized linear models based on poisson (poisson-lognormal spatial model) and binomial (binomial-logitnormal spatial model) distributions are often used to analyze discrete count data in which spatial correlation is observed. The likelihood function of these models i...

متن کامل

Monte Carlo sampling methods using Markov chains and their applications

A generalization of the sampling method introduced by Metropolis et al. (1953) is presented along with an exposition of the relevant theory, techniques of application and methods and difficulties of assessing the error in Monte Carlo estimates. Examples of the methods, including the generation of random orthogonal matrices and potential applications of the methods to numerical problems arising ...

متن کامل

T - 79 . 5204 Combinatorial Models and Stochastic Algorithms

I Markov Chains and Stochastic Sampling 2 1 Markov Chains and Random Walks on Graphs . . . . . . . . . . . 2 1.1 Structure of Finite Markov Chains . . . . . . . . . . . . . 2 1.2 Existence and Uniqueness of Stationary Distribution . . . 10 1.3 Convergence of Regular Markov Chains . . . . . . . . . . 14 1.4 Transient Behaviour of General Chains . . . . . . . . . . 17 1.5 Reversible Markov Chains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computers & Geosciences

دوره 85  شماره 

صفحات  -

تاریخ انتشار 2015